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Results on the rheological behavior of Chinese hamster ovary cell suspensions in a large range of concen-
trations are reported. The concentration-dependent yield stress and elastic plateau modulus are formalized in
the context of fractal aggregates under shear, and quite different exponents are found as compared to the case
of red blood cell suspensions. This is explained in terms of intrinsic microscopic parameters such as the
cell-cell adhesion energy and cell elasticity but also the cell’s individual dynamic properties, found to correlate
well with viscoelastic data at large concentrations ���0.5�.
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I. INTRODUCTION

The rheology of complex fluids has been studied exten-
sively over the past decades �1� and has revealed very in-
triguing behaviors. In particular, properties of suspensions,
either micronic or colloidal, are still a subject of interest
�2–5�. Classical behaviors of suspensions usually reveal
shear-thinning effects, but other unusual ones such as shear-
thickening �6� �i.e., viscosity increase with shear rate� or
yield stress have been observed �2,3�. The yield stress is the
critical value of the shear stress needed to induce flow for a
given fluid. It is closely related to the internal structure of the
fluid therefore its ability to form �or break� particle clusters
under flow. In this respect most studies have focused on solid
sphere suspensions.

On the other hand, there is much less work dedicated to
suspensions of deformable particles, such as biological cell
suspensions. The main work can be found in the field of
blood rheology. Suspensions of red blood cells �RBC� within
plasma were investigated by Chien �7,8� and revealed a
shear-thinning behavior, but a more detailed inspection of the
viscosity-shear rate diagrams showed that at low shear rates,
the stress level is close to a constant �s �Pa�, called the yield
stress. The well-known Casson’s model �9� relating the shear
stress � to the shear rate �̇ �� being a constant viscosity� can
be used to determine the yield stress:

�� = ��s + ���̇ . �1�

Chien and co-authors obtained �s for a large range of
hematocrit �H�, i.e., the RBC volume concentration �10�.
They showed a relationship of the type �s��H−b�3 �b being
a constant hematocrit�.

It is still not known yet whether this type of behavior is
universal, or if it could depend on cell type, cell shape or
other biological effects such as cell adhesion or cell elastic-
ity. In particular, one proposed explanation of the yield stress
in RBCs suspensions is based on the existence of “rouleaux”

which build due to cell interactions and exhibit large shape
aspect ratios �8� and a fractal dimension D. Therefore it is
necessary to apply strong enough stresses in order to break
such aggregates, in close relation with the yield stress.

In this work we propose to investigate the rheology of a
cell suspension, consisting of CHO cells �Chinese hamster
ovary cells� in a large range of concentrations. Such cells are
commonly used in biology, easy to culture, and can be ge-
netically modified to induce different adhesive properties.
These cells are spherical when suspended in a culture me-
dium, and organized in a specific manner leading to particu-
lar aggregation patterns of fractal type. This leads to the
determination of scaling laws based on fractal exponents �for
the yield stress �s and elastic modulus G0� which are seen to
be nonuniversal but dependent on cell type. The flow curves
constitute a basis to test classical empirical models �Bing-
ham, Casson, Herschel-Bulkley models� and other ones
�11,12� based on kinetic theories describing the rupture and
formation of particle clusters. The latter ones successfully
relate macroscopic effects to microscopic parameters, such
as the cell-cell adhesion energy and the cell elasticity. The
microscopic parameters that we find match well the ones
found in the literature using other techniques. This is impor-
tant in the context of recent studies related to tumour growth
�13–15� which consider cell assemblies with interactions as
well as cell elastic deformations. Furthermore, this study em-
phasizes the relationship between the dynamic rheological
properties of suspensions �16� and the single cell properties.

The paper is organized as follows. In Sec. II, we describe
the materials and methods of investigation �i.e., mainly rhe-
ometry and microscopy�. Then steady shear and dynamic
oscillatory shear results are presented in Sec. III. In light of
the typical scaling laws obtained, we suggest the use of the
model of Snabre and Mills �11� presented in Sec. IV, to ana-
lyze our data, and find the corresponding microscopic param-
eters. Finally, we present an alternative approach based on
structural similarity �17� in Sec. V.

II. MATERIALS AND METHODS

In our model system, adherent CHO cells are grown
in culture medium �Dulbecco’s Modified Eagle’s Medium
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�DMEM� containing 10% fetal calf serum� using standard
T75 boxes under proper conditions �37 °C, 5% CO2�, until
they are detached using trypsin, when they reach a conflu-
ency of �70%. Suspended cells are centrifuged at 1200 rpm,
a high enough velocity to get a concentrated suspension, but
slow enough in order to maintain the cells alive. Cell volume
concentration � �i.e., similar to the hematocrit H� is deter-
mined accurately after centrifugation in hematocrit tubes
containing the CHO cells. Then the right amount of remain-
ing supernatant is removed until the desired concentration is
obtained �between 0 and 60%�. Different experiments were
carried out on a conventional rheometer �Bohlin Gemini
150�. Both steady shear and oscillatory measurements were
made at T=20 °C. Due to the large amount of cells needed
�we usually require twelve T75 flasks in order to obtain a
volume of roughly 0.3 mL of cells�, we chose to use a plate-
plate geometry �20 mm diameter� with a small gap �between
400 �m and 1 mm� for the concentrated suspensions
whereas the smaller concentrations �below 10%� were tested
using the 60 mm cone-plane geometry �2° angle�. Typically
in our fluid, the suspended cells are spherical and monodis-
perse with a radius a�10 �m.

III. RESULTS

Experimental results for constant steady state shear rate �̇
are presented in Fig. 1. The viscosity � is shown to vary over
several decades, within shear rates typically between
10−3 s−1 and 103 s−1. In some cases, we limited ourselves to
the higher shear rates because of experimental reasons �i.e.,
steady state not reached�. By a first inspection of the curves,
we recognize the signature of a yield stress fluid as depicted
by the slope close to −1 in the viscosity-shear rate diagram
�or equivalently a constant shear stress at low shear rates�,
especially at the largest concentrations �, which will be par-
ticularly of interest here. The existence of this yield stress is
attributed to weak interactions which can exist after prepara-
tion of the system. Already existing proteins are available on
cell membranes and can be recruited to form bonds, leading
to particular structure arrangements. This explains the pres-

ence of a yield stress related to the formation of such struc-
tures. The yield stress is found to depend on volume concen-
tration � in a manner to be discussed later.

A second series of experiments was carried out in order to
study the systems under oscillatory strains at frequency f .
Small deformations �1% or less� within the linear regime
were performed in order to characterize the elastic modulus
G��f� and the loss modulus G��f�. The frequency values
were limited to the narrow range corresponding to fast
modes, in order to limit a possible time dependence of the
results, due to sedimentation, protein expression, cluster for-
mation or destruction. We find an interesting behavior as
shown in Fig. 2. Moduli G��f� usually prevails over G��f� at
small concentrations �e.g. �=0.2�, but as � increases, the
system becomes elastic with a much larger G��f�. This be-
havior is the signature of a viscoelastic medium, due to the
fact that interactions between elastic cells become effective
at large concentrations ���0.4�. The slow increase of the
elastic modulus G� against frequency reveals the presence of
a so-called “elastic plateau” modulus �G0� determined by the
value of G��f� at intermediate frequencies �1 Hz typically�.
The presence of elasticity has been observed previously for
RBC suspensions �18�, above a critical volume fraction
around �=0.2, and is believed to come from the elasticity of
the cells as they are packed more closely at large concentra-
tions such as the ones also encountered in tumor spheroids
�14�. Finally, we observe that the trends in the G�−G� plots
for large concentrations ���0.5� are remarkedly similar to
previous microrheological results obtained on single cells
�19–21�. Indeed, they show a slowly increasing G� and G�
�increasing slightly faster at frequencies above 1 Hz�, where
the elasticity dominates �G��G��.

As in the case of suspensions, we define a maximum
packing fraction �0 �which is usually 0.64 or even 0.74 for
solid spheres in a face-centered-cubic crystal�, depending on
cell elasticity, i.e. their compactness �22�. Due to the pres-
ence of soft spherical cells, it is expected that the value of �0
will be in this range. �0 is determined using the reduced
viscosity plot �

�0
as a function of � �� at a shear rate of

102 s−1, �0=0.0014 Pa s the solvent viscosity�. In our case,
this data �not shown� is found to match the well-known
equation

FIG. 1. �Color online� Viscosity � �Pa s� vs shear rate �̇ �s−1� at
different volume concentrations � from 0 to 60%.

FIG. 2. �Color online� Shear moduli G� and G� �Pa� vs fre-
quency f at different volume concentrations � ranging from 20% to
60%.
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�0
�−2.5�0
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proposed by Krieger and Dougherty �23�, this providing the
value �0�0.65. Note that this relationship is interesting be-
cause it matches Einstein’s viscosity for hard spheres �24,25�
� /�0=1+2.5� as well as Batchelor’s correction for non col-
loidal spherical particles �26� � /�0=1+2.5�+5.2�2 �here an
expansion of Eq. �2� for small � gives a second coefficient in
the expansion of �5 instead of 5.2, when using �0=0.65�.
Finally, Eq. �2� diverges as expected when �→�0, the lim-
iting packing fraction.

In order to investigate the effect of the volume concentra-
tion �, we first need to obtain the flow curve ���̇� of the
suspensions, as well as the relevant parameters, such as the
yield stress �s. From the viscosity curve in Fig. 1, we plot
the stress �=���̇��̇ vs shear rate �̇ in Fig. 3, and fit the data
with the Herschel-Bulkley law �2� �=�s+M�̇n, where M is a
constant, and n is a shear-thinning exponent ranging between
0 and 1 �1 is for a Bingham fluid, and the case of the New-
tonian fluid is recovered for n=1, �s=0�. Parameters have
been optimized using a standard Newton-Raphson method.
The parameter n is found to be very close to 1 at small
concentrations �0,10,20%� and decreases with concentration,
taking respective values of 0.89, 0.71, 0.57, 0.55, 0.47, 0.47
for concentrations of 40, 42, 46, 48, 52 and 60%. This point
will be further discussed in Sec. V.

This leads to the determination of the yield stress �s as a
function of volume fraction �. Such measurements are usu-
ally difficult �10� because of possible slip, sedimentation and
evaporation �27�. Care has been taken to avoid such prob-
lems, therefore only shear rates larger than 10−3 s−1 �lowest
value� are considered. The empirical Herschel-Bulkley
model �involving a yield stress� is then used when sufficient
data points are available. The fits are in satisfactory agree-
ment with the data which gives good confidence in the val-
ues of the yield stresses for ��0.42. Another attempt has
been made using Casson’s model and gives similar data. The
Bingham model was found to give less accurate values.

The values of the yield stresses �s and shear plateau
moduli G0 �value of G� at a typical frequency f =1 Hz� are
plotted in Fig. 4 as a function of volume concentration. This
plot shows power law dependences of the form �s��m1 and
G0��m2 and recalls previous results �11� obtained in the
case of the rheology of RBCs suspensions, at least for the
yield stress �s. From Fig. 4 we find that m1�8.4 and m2
�11.6. The m1 exponent is quite different from the one ob-
tained in the case of RBCs suspensions �m1�3� as this will
be discussed below.

IV. MODELING

As seen above, rheological modeling of such suspensions
should therefore predict shear-thinning behavior, as well as
yield stress properties at low shear rates �̇→0 and a concen-
tration dependence of �s and G0. In addition, cell suspen-
sions correspond to aggregated systems �see Fig. 5�. Under
flow, their structure is based on the persistent remodeling of
the cells with respect to each other as they exhibit deforma-
tions, rotations, possible rolling and/or separation. During
such events, cells may form clusters of size Rf to be com-
pared with the cell size a �radius�. The formation and de-
struction of cell clusters is the major ingredient to understand
the rheological properties of the cell system, in order to ex-
plain our data.

For example, when sheared under stress �, clusters break
into smaller ones, leading to shear-thinning effects. On the

FIG. 3. �Color online� Determination of the yield stress �s using
Herschel-Bulkley’s model.

FIG. 4. �Color online� Yield stress �s and shear elastic modulus
G0=G��f =1 Hz�, vs volume concentration �, log scale.

FIG. 5. Phase contrast microscopy of CHO cell suspension:
10% and 52%. Same scale for both images.
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other hand, the possible encounter of clusters leads to the
formation of larger structures, increasing the viscosity. Clus-
ters are organized in a fractal way. First, one needs to con-
sider a cluster at rest. Its size is Rf and it contains N cells,
linked by the following relationship �28�:

Rf

a
� N1/D, �3�

where D is the fractal dimension. To determine D, we follow
a previous approach �29� and consider circles �instead of
rectangles� of radius Rf containing a cluster. Then cells �ra-
dius a� are counted for two rather small concentrations �10%
and 20%�. Clichés like the left one in Fig. 5 are used to draw
circles and count the number of cells N. For larger clusters
containing more cells, we obtain a linear relationship be-
tween log10�Rf /a� and log10�N�, as shown in Fig. 6. Note that
the two cases studied �10% and 20%� give the same slope for
large values of N, this justifying the fractal hypothesis indi-
cated by Eq. �3�. For our system, we determine D�1.47
from the two-dimensional �2D� images. Thus, in three di-
mensions, we expect a fractal dimension of the order D�2
�30�. This number is similar to the ones found for RBCs
suspensions, although the scaling exponents for yield
stresses are quite different.

In the semi-empirical model proposed by Snabre and
Mills �11,12�, the formation and dissociation of clusters un-
der flow is taken into account. A change in Rf as a function
of the applied shear stress is assumed:

Rf

a
= 1 + ��*

�
�m

, �4�

where m is a dimensionless parameter, �* is a critical stress
related to the interfacial adhesion between cells: �*=� /a,
and � is the cell adhesion free energy. Using the concept of
effective medium with volume fraction

�A = ��Rf

a
�3−D

, �5�

one assumes an effective viscosity:

���� = �0
1 − �A

�1 −
�A

�0
�2 , �6�

and obtains the constitutive Eq. �31� which contains the yield
stress given by

�s � �*� �

�0
� 1

m�3−D�
. �7�

The last parameter to be used in the formula, �0, is the maxi-
mum packing concentration found previously.

We use the previous model to explain our experimental
data. The exponent m1=8.4 found for the yield stress �s is
plugged into the previous scaling law �7� for determination
of the parameter m=0.078. This is smaller than the values of
m found for RBC suspensions �typically m�0.3�. This
means that the size of clusters is not so sensitive to the ap-
plied stress, indeed one can consider that the cell aggregates
are easy to form �or hard to break� because of the round
shape of the cells, in contrast with RBCs which need to bind
in a very special way to form rouleaux. Thus, once broken by
stress, rouleaux are difficult to re–form. We have obtained
the value of the critical stress �*=1.4 N /m2, and a corre-
sponding value of �=1.410−5 N /m. This value of �* is
higher than the ones obtained for RBCs �11� but the interfa-
cial energy � is in the range of the small values indicated for
vesicles �32�. This is in favor of the initial assumption that
few adhesion molecules are involved in the region of contact
between the cells.

Finally, we postulate a similar relationship �28� for the
shear elastic modulus

G0 � G*� �

�0
� 1

p�3−D�
, �8�

where G* is an effective elastic modulus, but we include an
additional exponent n to be determined. We come up with
p=0.056 and G*=234 Pa. This value of the reference modu-
lus G*, as explained in the concept of fractal exponents �28�,
is to be related to typical values for single cells. In particular,
it corresponds to a Young’s elastic modulus E*=702 Pa �as-
suming that the cell is incompressible� which is typical for
adherent wild type CHO cells, of the order 0.5–1 kPa as
measured by AFM �33,34�.

V. AN APPROACH BASED ON STRUCTURAL
SIMILARITY

Another method for having access to parameters like the
yield stress �s and the viscosity � of such suspensions has
been proposed earlier �17�. It can be of interest to mention
such an approach since it is relevant to our case, in the con-
text of concentration-dependent laws. The idea consists in
assuming a dependence of the reduced shear stress T=� /�s

FIG. 6. �Color online� Plot of
Rf

a as a function of N to determine
the fractal dimension D. Two concentrations are used: 10% and
20%. There are noticeable differences at low values of N but there
is an increased accuracy for large N, where the two concentrations
give rise to the same slope D=1.47.
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as a function of the reduced shear rate S=��̇ /�s. This simi-
larity is interesting because it can allow us to superpose the
different curves onto a single master curve. Such an ap-
proach has been used previously with success in the case of
clay-water suspensions. The master curve is shown in our
case for CHO cell suspensions �Fig. 7�.

We note again a good superposition of the data, although
the few available data points for low reduced shear rates do
not allow very accurate results for the parameters under in-
vestigation. In an attempt to model the first part of the curve
�low shear rates�, a relationship of the following kind was
found:

T = 1 + 6.13S0.47. �9�

The value of the exponent close to 1 /2 recalls the well-
known Casson’s equation but in a slightly different form. In
fact, this form is a limiting case of Casson’s equation, corre-
sponding to an asymptotic expansion of Eq. �1� for small
enough shear rates. The use of Eq. �1� instead of Eq. �9� does
not fit the whole data. Proceeding further, we can obtain
values of the yield stress �s and viscosity � from the ad hoc
data reduction. This has led us to similar relationships for the
yield stress dependence vs concentration �as in Sec. IV�.
Similarly, the analysis of the viscosity ��� dependence
against concentration � also shows that Eq. �2� and the fol-
lowing equation � /�0= �1+0.75 / ��0 /�−1��2 from Chong
and coauthors �35� both predict a correct evolution of the

viscosity � leading to a packing fraction of the order
�0�0.65. Therefore we can conclude that this approach is
complementary to the previous one in the sense that it can
lead to an increased accuracy, when sufficient data is avail-
able, although it does not provide physical correlations be-
tween microscopic and macroscopic parameters, such as the
model that we chose to use in the above analysis �11�.

VI. CONCLUSIONS AND PERSPECTIVES

To sum up, the system studied here provides unusual fea-
tures important for the rheology of biological suspensions
and tissues. These concentrated cell suspensions behave as
yield stress fluids �also called visco-plastic materials�, for
which a fractal approach has been used. Under shear, the
fractal structure changes and can be modeled using a yield
stress �s and elasticity modulus G0 related to the fractal di-
mension D. Two other microscopic parameters of interest
have been introduced in the model: the cell adhesion energy
�, and the cell’s effective elastic modulus E* found to be

� � 10−5 N/m, E* � 700 Pa. �10�

The first is in the range of typical values of cell adhesion
energies, and the second in agreement with previous mi-
crorheology experiments. We also found a similar behavior
between the dynamic shear moduli G��f� and G��f� in this
study �at ��0.5�, and the ones obtained from microrheo-
logical studies on single cells �19–21� using various tech-
niques. Both show slowly increasing dynamic moduli in
terms of frequency, with the same relative positions. This
idea probably deserves more attention and should be tested
in the future, in particular further work may focus on the
characterization of other cellular suspensions including cells
with different elastic properties.

Finally, such a study can naturally lead to the understand-
ing of biological tissues, by including stronger adhesion
properties between the cells, or by taking into account the
addition of extra-cellular matrix components.
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